Extended Euclidean Algorithm

Step No.	q	r	u (coeff. of 43)	v (coeff. Of 29)
-	-	43	1	0
-	-	29	0	1
1	1	14	1	-1
2	2	1	-2	3
3	14	0	-	-

For each step $\mathrm{k}, \mathrm{q}_{\mathrm{k}}=\mathrm{r}_{\mathrm{k}-2} \operatorname{div} \mathrm{r}_{\mathrm{k}-1}$
Then
$\mathrm{r}_{\mathrm{k}}=\mathrm{r}_{\mathrm{k}-2}-\mathrm{q}_{\mathrm{k}} \mathrm{r}_{\mathrm{k}-1}$
$\mathrm{u}_{\mathrm{k}}=\mathrm{u}_{\mathrm{k}-2}-\mathrm{q}_{\mathrm{k}} \mathrm{u}_{\mathrm{k}-1}$
$\mathrm{v}_{\mathrm{k}}=\mathrm{v}_{\mathrm{k}-2}-\mathrm{q}_{\mathrm{k}} \mathrm{v}_{\mathrm{k}-1}$
Last nonzero r is the gcd. Obviously, when implementing the algorithm the entire table doesn't have to be stored.

Chinese Remainder Theorem

Given $\mathrm{x}=\mathrm{a}_{\mathrm{k}}\left(\bmod \mathrm{m}_{\mathrm{k}}\right)$
for $\mathrm{k}=1,2, \ldots$; and all mods are relatively prime
$\mathrm{N}=\cdot \mathrm{m}_{\mathrm{k}}=2 * 3 * 5=30$
$\mathrm{n}_{\mathrm{k}}=\mathrm{N} / \mathrm{m}_{\mathrm{k}}$
$\mathrm{yk}_{\mathrm{k}}=\mathrm{n}_{\mathrm{k}}^{-1}\left(\bmod \mathrm{~m}_{\mathrm{k}}\right)$
$x=\left(a_{1} n_{1} y_{1}+a_{2} n_{2} y_{2}+\ldots\right) \bmod N$
Under any m_{k}, the $\mathrm{k}^{\text {th }}$ term evaluates to a_{k} while the other terms evaluate to 0 . If the m_{k} 's are not relatively prime, find the gcd and split each equation into components. Eg: 6 and 10 have gcd 2, so split 6 into 2 and 3, 10 into 2 and 5. If the two mod 2 equations contradict one another, there is no solution. Otherwise recombine the $\bmod 2, \bmod 3$ and $\bmod 5$ equations using the Chinese Remainder Theorem as above.

Example:

$\mathrm{x}=1 \bmod 2$
$\mathrm{x}=2 \bmod 3$
$\mathrm{x}=3 \bmod 5$
$\mathrm{n}_{1}=30 / 2=15 ; \mathrm{n}_{2}=10 ; \mathrm{n}_{3}=6$
$y_{1}=15^{-1}(\bmod 2)=1^{-1}(\bmod 2)=1$; etc \ldots
$\Rightarrow x=23 \bmod 30$

Simultaneous Linear Mod Equations

1) Prime mod:

Every number except 0 has an inverse, so multiply pivot row by inverse of pivot.
2) Compound mod:

Split into relatively prime components, solve separately and recombine using the Chinese Remainder theorem.
3) Prime power mod:

Find the smallest power of the prime for which there is a pivot, which is not divisible by this power of the prime. Use extended Euclid to calculate 'inverse' for the pivot with regard to this power. I.e. instead of solving ax $=1(\bmod p)$ solve $a x=9(\bmod$ 27). Then multiply the pivot row by this inverse (which will be relatively prime regarding the mod).

Binary Manipulation

English	Sets	Pascal	C
And (1)	Intersection	And	$\&$
Or	Union	Or	I
Toggle/xor (2)	Unionlintersection	Xor	\wedge
Left shift (3)	-	Shl	\ll
Right shift (3)	-	shr	\gg

(1) can be equivalent to mod by powers of 2
(2) equivalent to adding bits mod 2
(3) equivalent to multiplying and (integer) dividing by powers of 2

Binary Euclidean Algorithm

(1) If M, N even:

$$
\operatorname{gcd}(\mathrm{M}, \mathrm{~N})=2 * \operatorname{gcd}(\mathrm{M} / 2, \mathrm{~N} / 2)
$$

(2) If M even while N is odd:

$$
\operatorname{gcd}(\mathrm{M}, \mathrm{~N})=\operatorname{gcd}(\mathrm{M} / 2, \mathrm{~N})
$$

(3) If M, N odd:
$\operatorname{gcd}(\mathrm{M}, \mathrm{N})=\operatorname{gcd}(\min (\mathrm{M}, \mathrm{N}),|\mathrm{M}-\mathrm{N}|)$
(replace larger with (larger - smaller); this will then be even and (1) can be applied.)
References: (i.e. useful sites!)
http://wikibooks.org/wiki/Discrete_mathematics:number_theory
http://www.cut-the-knot.org/blue/Modulo.shtml
http://www.campusprogram.com/reference/en/wikipedia/m/mo/modular_arithmetic.ht $\underline{\mathrm{ml}}$

Thanks to Bruce Merry for some very useful advice regarding mod Gaussian elimination.

