Extended Euclidean	Algorithm
--------------------	-----------

Step No.	q	r	u (coeff. of 43)	v (coeff. Of 29)
-	-	43	1	0
-	-	29	0	1
1	1	14	1	-1
2	2	1	-2	3
3	14	0	-	-

For each step k, $q_k = r_{k-2} \text{ div } r_{k-1}$ Then $r_k = r_{k-2} - q_k r_{k-1}$ $u_k = u_{k-2} - q_k u_{k-1}$

 $\mathbf{v}_k = \mathbf{v}_{k-2} - \mathbf{q}_k \mathbf{v}_{k-1}$

Last nonzero r is the gcd. Obviously, when implementing the algorithm the entire table doesn't have to be stored.

Chinese Remainder Theorem

Given x = $a_k \pmod{m_k}$ for k = 1, 2, ...; and all mods are relatively prime N = • $m_k = 2*3*5 = 30$ $n_k = N / m_k$ $y_k = n_k^{-1} \pmod{m_k}$ $x = (a_1n_1y_1 + a_2n_2y_2 +...) \mod N$

Under any m_k , the kth term evaluates to a_k while the other terms evaluate to 0. If the m_k 's are not relatively prime, find the gcd and split each equation into components. Eg: 6 and 10 have gcd 2, so split 6 into 2 and 3, 10 into 2 and 5. If the two mod 2 equations contradict one another, there is no solution. Otherwise recombine the mod 2, mod 3 and mod 5 equations using the Chinese Remainder Theorem as above.

Example:

 $\begin{aligned} x &= 1 \mod 2 \\ x &= 2 \mod 3 \\ x &= 3 \mod 5 \end{aligned}$ $\begin{aligned} n_1 &= 30 / 2 = 15; n_2 = 10; n_3 = 6 \\ y_1 &= 15^{-1} \pmod{2} = 1^{-1} \pmod{2} = 1; \text{ etc...} \\ &=> x = 23 \mod 30 \end{aligned}$

Simultaneous Linear Mod Equations

1) Prime mod:

Every number except 0 has an inverse, so multiply pivot row by inverse of pivot.

2) Compound mod:

Split into relatively prime components, solve separately and recombine using the Chinese Remainder theorem.

3) Prime power mod:

Find the smallest power of the prime for which there is a pivot, which is not divisible by this power of the prime. Use extended Euclid to calculate 'inverse' for the pivot with regard to this power. I.e. instead of solving $ax = 1 \pmod{p}$ solve $ax = 9 \pmod{27}$. Then multiply the pivot row by this inverse (which will be relatively prime regarding the mod).

Binary Manipulation

English	Sets	Pascal	С
And (1)	Intersection	And	&
Or	Union	Or	1
Toggle/xor (2)	Union\intersection	Xor	۸
Left shift (3)	-	Shl	<<
Right shift (3)	-	shr	>>

(1) can be equivalent to mod by powers of 2

(2) equivalent to adding bits mod 2

(3) equivalent to multiplying and (integer) dividing by powers of 2

Binary Euclidean Algorithm

(1) If M, N even:

gcd(M, N) = 2*gcd(M/2, N/2)

- (2) If M even while N is odd:
 - gcd(M, N) = gcd(M/2, N)
- (3) If M, N odd:

gcd(M, N) = gcd(min(M, N), |M - N|)

(replace larger with (larger – smaller); this will then be even and (1) can be applied.)

References: (i.e. useful sites!)

http://wikibooks.org/wiki/Discrete_mathematics:number_theory http://www.cut-the-knot.org/blue/Modulo.shtml http://www.campusprogram.com/reference/en/wikipedia/m/mo/modular_arithmetic.ht ml

Thanks to Bruce Merry for some very useful advice regarding mod Gaussian elimination.